Skip to Content

Coherent ultrafast lattice-directed reaction dynamics of triiodide anion photodissociation Featured

authors
Rui Xian, Gaston Corthey, David M. Rogers, Carole A. Morrison, Valentyn I. Prokhorenko, Stuart A. Hayes, and R. J. Dwayne Miller
date published
June 1, 2017
journal
NATURE CHEMISTRY
volume, number
9 (6)
pages
516–522
doi
10.1038/NCHEM.2751
ISSN
1755-4330
abstract

Solid-state reactions are influenced by the spatial arrangement of the reactants and the electrostatic environment of the lattice, which may enable lattice-directed chemical dynamics. Unlike the caging imposed by an inert matrix, an active lattice participates in the reaction, however, little evidence of such lattice participation has been gathered on ultrafast timescales due to the irreversibility of solid-state chemical systems. Here, by lowering the temperature to 80 K, we have been able to study the dissociative photochemistry of the triiodide anion (I3−) in single-crystal tetra-n-butylammonium triiodide using broadband transient absorption spectroscopy. We identified the coherently formed tetraiodide radical anion (I4•−) as a reaction intermediate. Its delayed appearance after that of the primary photoproduct, diiodide radical I2•−, indicates that I4•− was formed via a secondary reaction between a dissociated iodine radical (I•) and an adjacent I3−. This chemistry occurs as a result of the intermolecular interaction determined by the crystalline arrangement and is in stark contrast with previous solution studies.