Skip to Content

Direct observation of collective modes coupled to molecular orbital-driven charge transfer Featured

authors
Tadahiko Ishikawa, Stuart A. Hayes, Sercan Keskin, Gaston Corthey, Masaki Hada, Kostyantyn Pichugin, Alexander Marx, Julian Hirscht, Kenta Shionuma, Ken Onda, Yoichi Okimoto, Shin-ya Koshihara, Takashi Yamamoto, Hengbo Cui, Mitsushiro Nomura, Yugo Oshima,
date published
Dec. 18, 2015
journal
Science
volume, number
350 (6267)
pages
1501-1505
doi
10.1126/science.aab3480
ISSN
0036-8075
abstract

Correlated electron systems can undergo ultrafast photoinduced phase transitions involving concerted transformations of electronic and lattice structure. Understanding these phenomena requires identifying the key structural modes that couple to the electronic states. We report the ultrafast photoresponse of the molecular crystal Me4P[Pt(dmit)2]2, which exhibits a photoinduced charge transfer similar to transitions between thermally accessible states, and demonstrate how femtosecond electron diffraction can be applied to directly observe the associated molecular motions. Even for such a complex system, the key large-amplitude modes can be identified by eye and involve a dimer expansion and a librational mode. The dynamics are consistent with the time-resolved optical study, revealing how the electronic, molecular, and lattice structures together facilitate ultrafast switching of the state.